Page 347 - Srednje skole - radovi
P. 347

VERIŢNI RAZLOMCI I OPTIMIZACIJA HAJGENSOVOG MODELA PLANETARIJUMA
       CONTINUED FRACTIONS AND OPTIMIZATION OF HUYGENS’ PLANETARIUM MODEL

    Uĉenik : NIKOLINA MARKOVIĆ III razred  Gimnazija u Lazarevcu
    Mentori :  prof. dr Nataša Ćirović i prof. dr Branko Malešević Elektrotehniĉki fakultet u
    Beogradu
                                                   REZIME


    Veriţni razlomci postali su predmet izuĉavanja u 17. veku, ali njihova upotreba u matematici postojala je i

    ranje.  Predstavljaju  koristan  naĉin  aproksimiranja  brojeva.  Iracionalni  brojevi  u  svojoj  osnovi  imaju
    beskonaĉan  broj  cifara,  da  bismo  mogli  da  ih  koristimo  potrebno  je  da  ih  predstavimo  na  konaĉan  broj

    decimala, a jedan od naĉina da to uradimo je uz pomoć veriţnih razlomaka. Mogu se koristiti i za problem
    Hajgensovog modela planetarijuma, problem kalendara, problem muziĉke skale i mnogih drugih praktiĉnih

    problema                    u                   matematici                    i                   prirodi.

    U ovom radu ćemo se baviti definisanjem veriţnih razlomaka, kreiranjem algoritma koji pronalazi veriţne i
    meĊuveriţne  aproksimacije  i  optimizacijom  Hajgensovog  modela  planetarijuma  korišćenjem  veriţnih  i

    meĊuveriţnih  aproksimacija.  Ključne  reči:  veriţni  razlomci,  meĊuveriţni  razlomci,  aproksimacije,
    optimizacija i Hajgensov model planetarijuma.


                                                 SUMMARY


                                                        th
    Continued fractions began subject of study in the 17  century, but the use of them in mathematics existed
    long before. These fractions are useful way for approximating numbers. Irrational numbers in their base have

    an infinite number of decimal places and if we want to use them we need to approximate them with the final
    number of decimal places, and one of the ways for doing that is by using continued fractions. Also, we can

    use  continued  fractions  for  problem  of  Huygens’  planetarium  model,  problem  of  calendar,  problem  of
    musical    scale    and    many     other    practical   problems     in   mathematics     and    nature.

    In  this  paper,  we  will  deal  with  the  defining  of  continued  fractions,  creating  an  algorithm  which  finds

    continued  and  intermediate  approximations  and  optimization  of  Huygens’  planetarium  model  by  using
    continued and intermediate fraction approximations.


    Key  words:  continued  fractions,  intermediate  fractions,  approximations,  optimization  and  Huygens’
    planetarium model.
   342   343   344   345   346   347   348   349   350   351   352