Page 337 - PowerPoint Presentation
P. 337

CRTANJE GEOMETRIJSKIH FIGURA IZ JEDNOG POTEZA
                               DRAWING GEOMETRIC FIGURES IN ONE STROKE

    Autor : NIKOLINA MARKOVIĆ VIII razred OŠ „Vojislav Voka Savić“  Lazarevac
    Mentor : VESNA RAJŠIĆ, profesor matematike OŠ „Vojislav Voka Savić“  Lazarevac



                                                        REZIME


    Postoje takve geometrijske figure koje se mogu nacrtati jednim potezom olovke,tj. tako da se vrh olovke

    ne odvaja od hartije i da se duţ svake sastavne linije figure olovkom preĊe taĉno jednom. Navedenim i
    drugim sliĉnim osobinama figura bavi se teorija grafova-moderna i sasvim mlada grana matematike. Ona

    prouĉava osobine figura (grafova) koje se sastoje od ĉvorova i  linija koje ih  povezuju.Pri tome se ne
    uzimaju u obzir njihove geometrijske osobine (oblik,dimenzije i sl.).Bitne su samo veze izmeĊu ĉvorova i

    linija.
    Ono što me je podstaklo na istraţivanje u ovoj oblasti je to što do rešenja moţemo doći neposrednim

    crtanjem i razmišljanjem,ali ponekad nas to moţe dovesti u „ćorsokak” pa ipak treba poznavati odreĊena

    matematiĉka                                                                                    pravila.


              Kljuĉne reĉi : geometrijske figure,ĉvor,linija,graf,Ojlerov graf


                                                      SUMMARY



    There are such geometrical figures that can be drawn with one stroke of a pencil, ie so that the tip of the

    stylus  is  not  separated  from  the  paper  and  to  each  component  along  the  pencil  lines  cross  the  figure
    exactly  once.  These  and  other  similar  features  of  figures  engaged  in  graph  theory  -  modern  and  very

    young branch of mathematics. It studies the characteristics of figures  ( graphs ) that are composed of
    nodes and lines connecting them. This is not taking into account their geometric characteristics ( shape,

    dimensions, etc.). Important are only connections between nodes and lines.

     What encouraged me to research in this area is that we can come to a solution by direct drawing and
    thinking, but sometimes it can lead us to a "dead end" and yet we need to  know certain mathematical

    rules.


                Keywords: geometric figures, knot, line, graph, Euler graph.
   332   333   334   335   336   337   338   339   340   341   342