Page 344 - PowerPoint Presentation
P. 344

KONSTRUKCIJE UGLOVA I MNOGOUGLOVA SA UNIVERZALNIM OPISOM
       CONSTRUCTION OF ANGLES AND POLYGONS WITH UNIVERSAL DESCRIPTION

    Autor: Andrea Popović 7. razred OŠ"Jelena Ćetković"
    Mentor: Violeta Komnenović, diplomirani matematiĉar ETŠ "Nikola Tesla", Beograd



                                                   Rezime
    Rad sadrţi konstrukcije uglova, trouglova po stavovima podudarnosti, paralelograma, trapeza i pravilnih
    mnogouglogova.Konstrukcije uglova  30˚, 45˚, 60˚i 90˚ predstavljaju osnovu za konstrukcije svih drugih
    uglova  (75˚,135˚,120˚…).  Stavovi  podudarnosti  trouglova  su  SSS  (stranica,  stranica,stancica),  gde  su
    poznate  sve  tri  duţinestranica  trougla,  SUS(stranica,  ugao,  stanica),  gde  su  nam  poznate  duţine  dve
    stranice i ugao koje zaklapaju, SSU (stanica, stanica, ugao), gde su nam poznate duţine dve stranice i
    ugao  na  jednoj  od  njih  i  USU(ugao,  stanica,  ugao)  gde  nam  je  poznata  stranica  i  uglovi  na  njoj.  Za
    konstrukciju paralelograma potrebna su  tri nezavisna elementa. Kvadrat je odreĊen jednim nezavisnim
    elementom (poznato je da su mu svi uglovi pravi 90˚,  i dijagonale mu se seku pod pravim uglom). Za
    konstrukciju trapeza potrebna su  nam ĉetiri nezavisna elementa, a za konstrukciju pravouglog trapeza tri.
    Za konstrukcije pravilnih šestouglova, osmouglova i dvanaestouglova dovoljan je jedan elemenati znanje
    formula za dobijanje neophodnih uglova. Konstrukcije su kosturom predstavljene analizom koja sadrţi i
    skicu, samom konstrukcijom i detaljnim opisom konstrukcije. Stavovi podudarnosti sadrţe dokaz kojim
    potvrĊujemo  da  je  konstruisani  trougao,  traţeni,    kao  i  diskusiju  o  dva  podudarna  ili  jedinstvenom
    rešenju. Rad pokazuje univerzalnost primene matematiĉkih konstrukcija, oznaka i simbola. TakoĊe da za
    konstrukcije nisu dovoljni samo šestar i lenjir vec mnogo šire znanje iz razliĉitih oblasti na jednom mestu.
    Skice i konstrukcije su raĊene u “GeoGebra” dok je deo konstrukcija ruĉno raĊen. Ostvareni  rezultati
    ispitivanja ove oblasti su sledeći: pristupacan nacin komunikacije meĊu matematiĉarima,deo geometrije
    vrlo zanimljiv za obradu, “most” koji spaja svu decu sveta.
    Kljuĉne reci: Analiza, skica, konstrukcija, opis konstrukcije, lenjir , šestar.

                                                  Summary
    This  work  contains  constructions  of  angles  and  triangles  according  to  the  positions  of  congruence,
    parallelogram, trapezoid andregular polygons.Constructions of angles 30 ˚,45 ˚,60˚  and 90 represent the
    base for constructions of all the other angles (75 ˚,135 ˚,120…). Positions of congruence of triangles are
    SSS (side, side, side) where all three of triangle sides are familiar, SAS (side, angle, side) where we are
    familiar with two sides and an angle on one of them, and the last but not the least ASA (angle, side,
    angle) where we are familiar with one side and its angles.For the construction of parallelogram we need
    three independent elements. Square is defined with one independent element (we are familiar with the
    fact that all of its angles are right 90˚, and its diagonals are cut under the right angle).For the construction
    of trapezoid we need four independent elements, and for the construction of right-angled triangle we need
    three independent elements. Only one element and the knowledge of formulae for getting the necessary
    angles is enough for the construction of right-angled hexagons, octagons and others. These framework
    constructions  are  presented  with  the  analysis  which  contain  sketch,  construction  itself  and  detailed
    description  of  construction.  Positions  of  congruence  have  the  proof  with  which  we  confirm  that  the
    constructed triangle is sought, as well as the discussion of two congruent angles or unique solution. This
    work also shows the universality of the use of mathematical constructions, marks  and symbols.  In on
    place, it also shows that you do not only need a pair of compasses and ruler but much wider knowledge of
    different areas. Sketches and constructions are done in “GeoGebra ”while the part of the constructions are
    hand written. Achieved results, which were the issue of this search, are: accessible way of communication
    among mathematicians, segment of geometry which is interesting for working on, and “the bridge” which
    connects the children from all over the world.
    Key words: Analysis, sketch, construction, description of construction, a ruler, a pair of compasses.
   339   340   341   342   343   344   345   346   347   348   349