Page 357 - Srednje skole - radovi
P. 357

GRUPE I KOMBINATORNA PREBROJAVANJA
                                    GROUPS AND COMBINATORIAL COUNTING

    Uĉenik : NIKOLINA MARKOVIĆ II razred Gimnazija u Lazarevcu
    Mentor : VESNA RAJŠIĆ, profesor matematike Elektrotehniĉka škola „Nikola Tesla”
                                                         REZIME


    Prebrojavanje  predstavlja  vaţan  deo  kombinatorike  koji  se  bavi  prebrojavanjem  skupa

    objekata sa odreĊenim svojstvima. Mnogi problemi prebrojavanja, a naroĉito oni kod kojih

    meĊu posmatranim objektima ima “sliĉnih“, teško bi se mogli zamisliti bez primene teorije

    grupa.  Centralni  rezultat  svakako  je  teorema  koju  je  dao  Dţ.  Polja,  koja  je  jedan  od

    najelegantnijih                      rezultata                     u                     kombinatorici.

    Tehnika prebrojavanja na bazi Poljine teoreme ima veoma znaĉajne primene u prebrojavanju

    broja bojenja nekih figura, prebrojavanju Bulovih funkcija, prebrojavanju grafova, u hemiji,

    u                                           statistiĉkoj                                           fizici.

    U ovom radu ćemo se baviti analizom Poljine teoreme i njenom primenom.


    Kljuĉne reĉi: teorija grupa, permutacije, funkcija generatrise, broj orbita i polinom ciklusnog


    indeksa.


                                                       SUMMARY


    Counting is an important part of the combinatory which deals with the counting of a set of

    objects  with  certain  properties.  Many  counting  problems,  especially  those  where  among

    observed objects there are “similar” ones, would hardly be imagined without application of

    the group theory. The central result is certainly a theorem given by G. Polya, which is one of

    the             most              elegant              results             in             combinatory.

    Technique  of  counting  based  on  the  Polya’s  theorem  has  rather  important  applications  in

    counting  the  number  of  dyeing  of  some  figures,  the  counting  of  Boolean’s  functions,  the

    counting of graphs, in chemistry, in statistic physics.


    In this paper, we will deal with the analysis of Polya’s theorem and its application.



    Key  words:  group  theory,  permutations,  generating  function,  number  of  orbits  and

    polynomial cyclical index.
   352   353   354   355   356   357   358   359   360   361   362