Page 375 - Srednje skole - radovi
P. 375

HIPERBOLIĈKA GEOMETRIJA. HYPERBOLICGEOMETRY


    Uĉenik : Dušica Bralović I razred  Matematiĉka gimnazija,  Beograd

    Mentor: Violeta Komnenović,profesor matematike Elektro tehniĉka škola „Nikola Tesla”, Beograd

                                                     Rezime


    Hiperboliĉka  geometrija  (geometrija  Lobaĉevskog  )    je  neeuklidska  geometrija  u  kojoj  vaţe  aksiome
    apsolutne  geometrije,ali  u  kojoj  je  peti  postulat  Euklidske  geometrije  promenjen.  Pored  Lobaĉevskog  do
    istih rezultata došao je i Janoš Boljaj ((1802 – 1860), maĊarski matematiĉar),pa ovu geometriju zovemo još i
    geometrija Boljaj-Lobaĉevskog. Sem hiperboliĉke i euklidske geometrije postoji još geometrija koje imaju
    promenjeni peti postulat i ove geometrije pripadaju grupi neeuklidskih geometrija. U matematici moţe biti
    ĉudno da postoje dve teorije koje su u suprotnosti (Euklidska geometrija i geometrija Lobaĉevskog), ali obe
    teorije su neprotivreĉne  i potpune.Za modernu matematiku najvaţnije je da su obe taĉne, pa nemoţemo ih
    porediti već ih prihvatiti bez dokaza.
    Pojavom  Ajnštajnove teorije relativiteta ( A. Ajnštajn (1879 – 1955),nemaĉki fiziĉar) pokazalo se da je u
    kosmiĉkom prostoru pogodnije da se koristi neeuklidska geometrija, pa i geometrija Lobaĉevskog.
    U okviru nastave geometrije prvi put sam se srela sa pojomhiperboliĉke geometrije, oblast koja je izuzetno
    interesantna  i  koja  je  pobudila  moja  interesovanja.  U  ovom  radu    detaljno  su  date  aksiome  hiperboliĉke
    geometrije , dokazane su neke od teorema takoĊe objašnjene su ravan i prostor ove geometrije.
    Razvoj geometrije ovim nikako nije završen. I danas su mnogi problemi u matematici, posebno iz oblasti
    neeuklidskih geometrija  još uvek otvoreni za rešavanje.

    Kljuĉne  reĉi:paralelnost,hiperparalelnost,hiperboliĉka  ravan  ,  hiperboliĉki  prostor  ,  Oricikl,  Eliptiĉki
    pramen.


                                                    Abstract

    Hyperbolicgeometry  (Lobachevskiangeometry)  is  a  non-Euclideangeometrywhere  the  axioms  of
    absolutegeometryarevalid,  but  the  fifth  postulate  of  Euclideangeometry  is  changed.  BesidesLobachevsky
    same resultscameandJánosBolyai  ((1802  -  1860), Hungarianmathematician), so  thisgeometry is  alsocalled
    the  Bolyai-Lobachevskian  geometry.  Apart  from  the  hyperbolic  and  Euclidean  geometry,  there  are
    geometries that have altered the fifth postulate and these geometries belong to the non-Euclidean geometry.
    In  mathematicscan  be  surprising  that  exist  two  theories  which  are  in  conflict  (Euclidean  geometry,
    andLobachevskigeometry),  but  in  the  same  time  the  bothareunambiguousandcompletely.  For
    modernmathematic is essentialthattheyarebothcorrect, so we can not compare them just accept them without
    proof.
    With the advent of Einstein'sTheory of Relativity (A. Einstein (1879 - 1955), German physicist) has shown
    that  in  the  cosmic  space  convenient  to  use  non-Euclideangeometry,  and  geometry  Lobachevsky.

    The idea of thisworkhadstemmedby the factthathyperbolicgeometry is abstract. In this work details are given
    axioms of hyperbolic  geometry, demonstrated some of the theorems are  also explained in this plane and
    space                                                                                          geometry.

    The development of geometry by this is not complete yet. There are still a lot of problems in mathematics,
    especially in the field of non-Euclidean geometry is still open for resolution.
    Keywords: parallel, hyper parallel, hyperbolic plane, hyperbolic space, Oricycle, Elliptic curve.
   370   371   372   373   374   375   376   377   378   379   380