Page 377 - Srednje skole - radovi
P. 377

PARALELNOST I HIPERPARALELNOST U HIPERBOLIĈKA GEOMETRIJA. PARALLELS
                        AND HYPER-PARALLELS IN HYPERBOLIC GEOMETRY
    Uĉenik: TAMARA ŠEKULARAC,     III razred     Matematiĉka gimnazija, Beograd
    Mentor: VESNA RAJŠIĆ, profesor matematike    Elektrotehniĉka škola „Nikola Tesla”, Beograd
                                                         REZIME
    Razvoj nauke podsticao je razvoj tehnike i doveo do napretka sveukupnog ĉoveĉanstva. Veliki broj
    problema koji se postavljao pred tadašnji uĉeni svet i nauĉnike zahtevao je rešavanje mnogobrojnih
    problema  u  raznim  prirodnim  naukama,  a  meĊu  njima  i  u  matematici  i  geometriji.  Izuĉavanja  u
    oblasti  geometrije  stara  su  hiljadama  godina.  Pokušaji  razrešenja  pitanja  o  petom  euklidskom
    postulatu  doveli  su  do  osnivanja  potpuno  nove  geometrije  koja  je  ne  protivureĉna.  Ova  nova
    hiperboliĉka geometrija je taĉna koliko i euklidska geometrija. Dokazi do kojih se izuĉavanjem ove
    geometrije došlo doprineli su proširenju postojećih znanja i  uvoĊenju potpuno novog pogleda na
    geometriju. Ova nova saznanja uticala su na potpuno novo, drugaĉije i kompleksnije sagledavanje
    odnosa taĉke, prave i ravni u prostoru.
    Lobaĉevski  je  utvrdio  da  njegova  neeuklidska  geometrija  ima  neposrednu  primenu  kod
    izraĉunavanja  kosmiĉkih  prostranstava.  U  okvirima  obiĉnih  zemaljskih  dimenzija  kod  svih
    proraĉunavanja  ljudi  koriste  euklidsku  geometriju  kao  geometriju  koja  je  najjednostavnija  i
    najrealnije  odraţava  stvarnost.  Dostignuća  u  ovoj  oblasti  govore  o  tome  da  se  fiziĉki  prostori
    prevelikih  dimenzija  ponašaju  kao  neeuklidski  prostori.  Za  njihovo  izuĉavanje  potrebne  su
    neeuklidske geometrije odnosno geometrija Lobaĉevskog.
    Ideja  o  ovom  istraţivanju  o  hiperboliĉkoj  geometriji  potekla  je  iz  ţelje  da  se  sazna  nešto  više  o
    mogućnostima matematiĉkog i geometrijskog rešavanja prostora, kao o neophodnom znanju  bez
    koga  se  ne  mogu  rešavati  sloţeni  prostorni  problemi  u  raznim  oblastima  istraţivanja  u  domenu
    geometrije, fizike i astronomije.
    Kljuĉne reĉi: hiperboliĉka geometrija, aksioma Lobaĉevskog, paralelnost, hiperparalelnost, modeli
    hiperboliĉke ravni, primena hiperboliĉke geometrije
                                                         Summary
    The development of science encouraged the development of technology and led to the progress of
    mankind.  A  great  number  of  problems  which  scholars  and  scientists  of  that  time  were  facing
    demanded  a  solution  of  numerous  problems  in  various  natural  sciences,  among  others,  in
    mathematics and geometry. The studies in the field of geometry have been thousands of years old.
    Attempts of resolving questions about the fifth Euclidian postulate led to the creation of entirely new
    geometry that is non-contradictory. This new hyperbolic geometry is as accurate as the Euclidian
    geometry. The evidence obtained by studying this type of geometry led to the expansion of existing
    knowledge and to the introduction of a completely new view of the geometry. The new findings
    influenced  a  completely  new,  different  and  more  complex  understanding  of  the  relations  among
    dots, lines and planes in space. Lobachevsky found that his new non-Euclidian geometry has direct
    application  in  the  calculation  of  user  spaces.  In  terms  of  ordinary  earthly  dimensions  in  all
    calculations people use Euclidian geometry as the simplest geometry which reflects reality in most
    realistic  way.    Achievements  in  this  area  suggest  that  physical  spaces  of  too  large  dimensions
    behave as nonEuclidian spaces. Their study requires non-Euclidian geometries, i.e. Lobachevskian
    geometry. The idea of this research on hyperbolic geometry came from a desire to  learn more about
    the possibilities of mathematical and geometrical solution of space, as the knowledge necessary to
    solve complex spatial problems in various areas of research in the field of geometry, physics and
    astronomy.
    Key words: hyperbolic geometry, the axiom of Lobachevsky, parallelism, hyperparallelism, models
    of the hyperbolic planes, the application of hyperbolic geometry
   372   373   374   375   376   377   378   379   380   381   382