Page 372 - PowerPoint Presentation
P. 372

FIBONAĈIJEVI BROJEVI I NEPREKIDNA PODELA. FIBONACCI NUMBERS  AND CONTINUOUS
                                                        DIVIDING


    AUTOR            : LUKA ŽIVKOVIĆ , VIII6  , O.Š. "Branko Ćopid" Beograd

    NASTAVNIK  : SLAĐANA KOSAČEVIĆ ,nast.mat. O.Š. "Branko Ćopid" Beograd

    MENTOR        : VESNA RAJŠIĆ , prof. matematike, E.T.Š "Nikola Tesla" Beograd

                                                               REZIME

    Upoznavanje sa ovim neobiĉnim poretkom brojeva uvodi nas u mnoštvo zanimljivih ma-tematiĉkih pojava u svetu oko

    nas, pa i u nama samima. Fibonačijevi brojevi predstavlja-ju niz koji poĉinje brojevima 0 i 1 i ĉiji je svaki sledeći ĉlan
    zapravo zbir svoja dva pret-hodnika. U prirodi ga moţemo uoĉiti u ţivom ali i u neţivom svetu. Odnos izmeĊu dva su-

    sedna broja ovog niza daje vrednost Zlatnog preseka  koji je poznat i kao boţanska proporcija .Korišćen je u arhitekturi

    od davnina , ali je takoĊe prisutan i u graĊi ţivih or-ganizama.  Zlatni presek se dobija ako se jedna duţ podeli na takav
    naĉin da je odnos ve-ćeg dela prema celini isti kao i odnos manjeg dela prema većem . Fibonaĉijevi brojevi su  blisko

    povezani sa Lukasovim brojevima koji meĊusobno stoje  u skoro identiĉnom od-nosu,  osim što su prva dva broja ovog
    niza  1 i 3.  Pomoću Fibonaĉijevih  brojeva se mogu izraĉunati i Pitagorine trojke. Ovi nizovi  su sadrţani u Paskalovom

    trouglu koji predstavlja jedan od osnovnih brojnih obrazaca u prirodi.


     Ključne reči: Fibonaĉijev niz, Lukasovi brojevi, rekurzija ,konvergencija, graniĉna vred-nost, Zlatni presek, broj Phi ,
     Pitagorine trojke,  Paskalov trougao, binomni koeficijenti.


                                                             SUMMARY


    Introduction to the unusual order of these numbers brings us a lot of interesting mathema-tic phenomena in the world

    around us and in us. Fibonacci numbers  represent a series of numbers that begins with 0 and 1 and whose every member
    of the following is actually the sum of its two-pret the corridor. In nature it can be seen in a live, but also in the inani-

    mate world. The relationship between the two adjacent numbers of this series gives the value of the Golden section,
    which is also known as the divine proportion . Used in archi-tecture from antiquity, but is also present in material of the

    living organism. Golden Sec-tion gets one along the division in such a way that the ratio of the greater whole the same

    as the ratio of small to larger. Fibonacci numbers are more closely related to Lukas num-bers to each other are almost
    identical  comparison,  except  that  the  first  two  of  this  series  1  and  3.Using  Fibonacci  numbers  can  be  calculated

    Pythagorean triples. These sequen-ces are contained in the Pascal triangle, which is one of a number  basic forms in
    nature.


               Key words: Fibonacci number, Lucas numbers, recursion, convergence, limit, Golden Section, the number of

               Phi , Pythagorean triples, Pascal triangle, binomial coefficients.
   367   368   369   370   371   372   373   374   375   376   377