Page 387 - PowerPoint Presentation
P. 387

FIBONAĈIJEV NIZ BROJEVA I BROJ FI. PHIBONACCY’S CHAIN OF NUMBERS AND NUMBER PHY

    Autori: Stefan Jovanović OŠ ,,Slobodan Penezić-Krcun‟‟ VIII-2,   Lazarevac


    Mentor:Vesna Raišić

                                                                Rezime

               U 13. veku Leonardo Fibonaĉi, italijanski matematiĉar, formirao je niz prirodnih brojeva koji je u 17. veku
               nazvan ,,Fibonaĉijev niz brojeva‟‟.

               U Fibonaĉijevom nizu brojeva svaki naredni broj se dobija sabiranjem predhodna dva. Fibonaĉi je pomoću
               svog  niza  došao  do  iracionalnog  broja  Fi(Φ)  koji  iznosi  1.618033989...  Fibonaĉijev  niz  je  povezan  sa
               Paskalovim trouglom, a Fi sa zlatnim presekom.


               Sadrţaj:

                   1.     Fibonaĉijev niz brojeva i njegove karakteristike;
                   2.     Izraĉunavanje broja Fi;
                   3.     Veza Fibonaĉijevog niza i Paskalovog trougla;
                   4.     Veza izmeĊu broja Fi i zlatnog preseka;
                   5.     Zanimljivosti oko Fibonaĉijevog niza;
                   6.     Zanimljivosti oko broja Fi.



               Kljuĉne reĉi:niz,Fi,Fibonaĉi,broj.

                                                               Summary



               In 13th century Leonardo Phibonacci , Italian mathematician, formed chain of natural numbers which was
               called  ,,Phibonacci‟s  chain  of  numbers‟‟  in  17th  century.In  Phibonacci‟s  chain  of  numbers  every  next
               number  is  made  by  adding  previous  two.  By  his  chain,  Phibonacci  came  to  irrational  number,  number
               Phy(Φ) which amount 1.618033989... Phibonacci‟s chain is connected with Pascal‟s triangle, and Phy with
               golden cut.


               Content:

                   1.     Phibonacci‟s chain of numbers and his preferences;
                   2.     Comming to number Phy;
                   3.     Connection of Phibonacci‟s chain of numbers with Pascal‟s triangle;
                   4.     Connection of number Phy with golden cut;
                   5.     Attractions about Phibonacci‟s chain of numbers;
                   6.     Attractions about number Phy.
               Key words:chain,Phy, Phibonacci,number
   382   383   384   385   386   387   388   389   390   391   392