Page 383 - PowerPoint Presentation
P. 383

RAZLIĈITI METODI REŠAVANJA SISTEMA LINEARNIH JEDNAĈINA. DIFFERENT METHODS OF
                                    SOLVING A SYSTEM OF LINEAR EQUATIONS

    Uĉenik:   DAVID AVRIĆ VIII razred OŠ "Olga Petrov "
     Mentor:   VESNA RAJŠIĆ profesor matematike Elektrotehniĉka škola " Nikola Tesla "

    REZIME
    U  razliĉitim  naukama  postoje  problemi  koji  se  najlakše  rešavaju  pomoću  sistema  linearnih  jednaĉina.  U  radu  su
    prikazane vrste sistema linearnih jednaĉina i razliĉiti metodi rešavanja. Sistemi linearnih jednaĉina koji se najviše koriste
    su kvadratni sistemi, jer oni najĉešće imaju jedinstveno rešenje. Oni su najviše obradjivani u radu. Cilj istraţivanja je bio
    prikazati razliĉite metode kojima se mogu rešiti sistemi linearnih jednaĉina.
     U radu su prikazane sledeće metode:
    A) Za rešavanje sistema linearnih jednaĉina sa dve nepoznate:
    1. Metod zamene
    2. Metod suprotnih koeficijenata ( Gausov metod)
    3. Grafiĉki metod
    4. Metod determinanti ( Kramerov metod)
        B) Za rešavanje sistema linearnih jednaĉina sa sa više nepoznatih:
    1. Gausov metod
    2. Metod determinanti ( Kramerov metod)
    U okviru Kramerove metode  obradjen je pojam determinanti, Sarusovo pravilo za izraĉunavanje determinanti trećeg
    reda i Laplasovo pravilo za rešavanje determinanti n-tog reda.
    Kljuĉne reĉi : jednaĉina, sistem, nepoznata, koeficijent, rešenje.

    SUMMARY
    In different of sciences there are problems which are solved most easily with systems of linear equations. The types of
    systems  of  linear  equations  and  different  methods  of  solving  them  are  presented  in  the  paper.  Systems  of  linear
    equations  are  used  for  the  most  part  are  square  systems,  because  they  most  often  have  a  unique  solution.  They  are
    expounded most in the paper. The aim of the study was to present the different methods with which systems of linear
    equations can be solved.
    The following methods are presented in the paper:
        A) Solving a system of linear equations in two variables:
    1. Method of substitutions
    2. Method of opposite coefficients ( Gaussian method)
    3. Graphical method
    4. Method of determinants ( Cramer's method )
        B) Solving a system of linear equations in more than two variables:
    1. Gaussian method
    2. Method of determinants ( Cramer's method )
    Within Cramer's method the concept of detarminants, Sarrus' rule for computing the detarminants of a 3-by-3 matrix and
    Laplace's rule for computing the detarminants of an
    n-by-n matrix are explained.
   378   379   380   381   382   383   384   385   386   387   388