Page 379 - PowerPoint Presentation
P. 379

PITAGORINA TEOREMA I NJENA PRIMENA. PYTHAGOREAN THEOREM AND ITS APPLICATION

    AUTOR: Nataša Karadţov VII razred OŠ “Starina Novak”

    MENTOR: Vesna Rajšić Profesor matematike ETŠ “Nikola Tesla”

                      Rezime

    Pitagorina teorema je dubok i višesmislen stav geometrije koji do nas dopire iz daleke prošlosti. Vekovima je sluţila kao
    inspiracija za nove matematiĉke dokaze, koje su pronalazili i ljudi koji nisu bili profesionalni matematiĉari. U radu je

    opisana Pitagorina teorema, njeno numeriĉko i  geometrijsko znaĉenje,  dokazi  teoreme kao i  njena primena u nekim

    oblastima. U prvom delu istraţivanja dat je istorijat Pitagorine teoreme, kao i dokazi koji je potvĊuju. Za dokazivanje
    teoreme korišćene su dve vrste dokaza: dokaz pomoću razloţive jednakosti i dokaz pomoću dopunske jednakosti, Euklid

    (1).
    U radu je objašnjena i pokazana primena Pitagorine teoreme na kvadrat i jednakostraniĉni trougao, kao i konstrukcija

    nekih iracionalnih brojeva.
    Pitagorina teorema i njoj obratni stav moţe se naći na samom kraju prve knjige Euklidovih Elemenata. Kako se svaka od

    trinaest  knjiga  ovog  dela  završava  nekim  od  veoma  znaĉajnih  stavova  geometrije  onog  vremena,  krunisanjem  prve

    knjige Elemenata Pitagorinim stavom, Euklid je ovu teoremu postavio na prvo mesto u geometriji.


    Kljuĉne reĉi Pitagora, Euklid, pravougli trougao, teorema, dokaz, hipotenuza.

               Summary


    Pythagorean  theorem  is  an  old  law  of  geometry  dating  from  the  ancient  times.  For  many  centuries  it  has  been  the
    inspiration for new mathematical proofs discovered by people who were not always professional mathematicians. In this

    work Pythagorean theorem is explained as well as its algebric and geometrical meaning, proofs of the theorem and its
    application  in  certain  fields  of  science.  In  the  first  part  of  this  work  the  historical  background  of  the  teorem  was

    exploited and some of its proofs. To prove the theorem two different kinds of proofs were used; the proof by separable

    equations and the proof by additional equations. Euklid (1).
    The  application  of  Pythagorean  theorem  to  squares  and  equilateral  triangles  and  the  construction  of  some  irrational

    numbers have also been explained. Pythagorean theorem and the converse of the theorem can be found at the end of
    Euclid‟s Elements, Book (1). As each of thirteen books of Elements is concluded with some very important laws of

    geometry  of  that  time,  the  fact  that  Euclid  finished  his  first  book  with  Pythagorean  theorem  gives  it  a  special
    significance as being the basic law in geometry.



               Kay words Pythagoras, Euclid, right triangle, theorem, proof, hypotenuse
               .
   374   375   376   377   378   379   380   381   382   383   384