Page 378 - PowerPoint Presentation
P. 378

KOMPLEKSNI BROJEVI . COMPLEX NUMBERS

    Uĉenik: TAMARA ŠEKULARAC,     VIII razred     OŠ „ KaraĊorĊe“, Beograd


    Mentor: VESNA RAJŠIĆ, profesor matematike    Elektro tehniĉka škola „Nikola Tesla”, Beograd


    REZIME

    Razvoj  nauke  uslovljavao  je  postavljanje  i  rešavanje  mnogobrojnih  problema  u  raznim  prirodnim  naukama,  pa  tako  je  i  u

    matematici. Tokom vekova javljali su se problemi u geometriji, aritmetici i drugim oblastima matematike od kojih su neki rešeni.
    Neki  od  tih  problema,  iako  su  davno  postavljeni,  još  uvek  nisu  rešeni.  Teorijski  rezultati  pokazali  su  da  postoje  matematiĉki
    problemi koji ne mogu ni biti rešeni. Sloţenost problema zahtevala je i razvoj matematiĉkih metoda kojima se ti problemi rešavaju.

    To je dovelo do proširivanja postojećih i uvodjenje novih pojmova u matematici. Saznanje o brojevima se širilo od skupa prirodnih
    preko skupa celih i racionalnih, do skupa realnih brojeva. Pokazalo se da ovi skupovi nisu dovoljni da opišu prouĉavane pojave
    tako da je uveden i skup kompleksnih brojeva. Razvojem teorije kompleksnih brojeva omogućeno je rešavanje realnih problema u

    raznim oblastima ljudske delatnosti, kako u praktiĉnim tako i u ĉisto teorijskim zadacima.  Kompleksni brojevi se primenjuju u
    raznim oblastima matematike (u geometriji, analitiĉkoj geometriji, trigonometriji i kombinatorici) i u raznim oblastima istraţivanja
    u domenu fizike i elektronike. Ideja o ovom istraţivanju o kompleksnim brojevima potekla je iz ţelje da još jednom ukaţem na

    karakteristike kompleksnih brojeva i rešim do sada za mene veoma sloţene i nerešive matemetiĉke probleme.     Kljuĉne reĉi:
    kompleksni brojevi, kompleksan broj kao ureĊen par, algebarski oblik kompleksnih brojeva, trigonometrijski oblik kompleksnih

    brojeva, primena kompleksnih brojeva,  razvoj kompleksnih brojeva

     Summary


    The  development  of  science  conditioned  positioning  and  solving  numerous  problems  in  the  natural  sciences  as  well  as  in
    mathematics. During the centuries, problems emerged in geometry, arithmetic and other areas of mathematics, some of which have

    been solved. Some of these problems, although positioned long time ago, haven‟t been solved yet. Theoretical results have shown
    that  there  are  certain  mathematics  problems  that  can‟t  be  solved.  The  complexity  of  the  problem  required  the  development  of
    mathematical methods to solve those problems. This led to the extension of the existing and the introduction of new concepts in

    mathematics. Knowledge about the numbers was spreading from the set of the natural

    numbers over the set of the entire and the rational numbers to the set of the real numbers. It was shown that these sets aren‟t

    sufficient  to  describe  the  studied  phenomenon,  so  the  set  of  complex  numbers  was  introduced.  Development  of  the  theory  of
    complex numbers enabled the solution of real problems  in different areas of human activity, in practical as well as in purely

    theoretical tasks. Complex numbers have been applied in different areas of mathematics (in the geometry, analytical geometry,
    trigonometry and combinatory) and in different areas of research in the field of physics and electronics. The idea of this research of
    complex  numbers  originated  from  the  desire  to  point  out  the  characteristics  of  complex  numbers  once  again  and  to  solve

    mathematical problems that were until now very complex and unsolvable for me. Key words: complex numbers, complex numbers
    as  an  arranged  pair,  algebraic  form  of  complex  numbers, trigonometric form  of  complex  numbers,  the  application  of  complex
    numbers, the development of complex numbers.
   373   374   375   376   377   378   379   380   381   382   383