Page 382 - PowerPoint Presentation
P. 382
POVRŠINE FIGURA. SURFACES AREA OF FIGURES
autori: Jevrem Leverda, Filip Broćić razred: VII škola: OŠ „Kralj Petar I
mentor: Vesna Rajšić profesor matematike ETŠ “Nikola Tesla”,Beograd
Rezime
Praktiĉni problemi nametnuli su potrebu za geometriom, mnogo pre nego što je ona zasnovana kao nauka.Nastala iz
nama banalnih problema, geometrija sada moţda krije i odgovore o izgledu svemira i pravilima koja tamo vaţe.
Cilj ovog našeg rada jeste bolje upoznavanje sa površinama figura, na naĉin kako se ta oblast razvijala kroz istoriju
geometrije. Prateći logiĉko zakljuĉivanje proisteklo iz praktiĉnih problema uvešćemo precizne definicijekoje se ne
menjaju još od staro grckih matematiĉara uprkos stalnom razvoju matematike i pojavi velikog broja novih disciplina.
Do zakljuĉaka o izraĉunavanju površina figura dolazimo i teorijski, a zatim ih potvrĊujemo i kroz razne primere, poĉev
od najelementarnijih pa do sloţenih zadataka.
Kao glavni rezultat našeg rada istaki bi doslednu primenu teorema na zadatke.
Kljuĉne reĉi: površina, figure, podudarnost, izraĉunavanje.
Summary
Practical problems had imosed the need for geometry long before it was established as a science.
Geometry might hide the answers concerning the universe and the rules that exist there.
The aim of this paper is to give deeper insight into the area of figures, in a way that goes along with the development of
this discipline through history of geometry. Following logical reasoning resulting from practical problems, we shall
introduce more precise definitions, which have been the same since anciant Greek mathematicians and in spite of
appearance of many new disciplines.
Conclusions about the area of figures are also formed on the basis of theory, and then are checked practicaly from
elementary to more complex examples.
We would like to point out as the main result our consistent applying of theorems in excercises.
Key words: surfaces, area, figure, analogy, calculations.