Page 367 - Srednje skole - radovi
P. 367

INTEGRALI
                                                       INTEGRALS

    Autor: MILICA MATORĈEVIĆ, II , Srednja škola, Grocka
                                             2
    Mentor: VIOLETA KOMNENOVIĆ, profesor matematike, Elektrotehniĉka škola „ Nikola
    Tesla“, Beograd
                                                           REZIME


    Integrali su jedan od najvaţnijih pojmova matematiĉke analize. Postoji više vrsta integrala, ali najpoznatiji
    meĊu njima su neodreĊeni i odreĊeni integrali. Integralni raĉun zajedno sa diferencijalnim raĉunom stvara

    infinitezimalni raĉun, koji predstavlja osnovnu konstrukciju za prirodne i tehniĉke nauke.


             OdreĊeni integral je tesno povezan sa starim matematiĉkim problemom odreĊivanja površine figure
    koja se nalazi ispod grafa. Taj problem pratio je matematiĉare sve do XVII veka kada su Njutn i Lajbnic

    otkrili vezu izmeĊu odreĊenog i neodreĊenog integrala. Naime oni su otkrili da se površine ispod grafa mogu
    izraĉunati obrnutim procesom diferencijacije. Danas integralni raĉun ima veliku primenu kako u matematici,

    tako i u fizici, pa ĉak i u ekonomiji. Cilj mog rada bio je da saznam šta su to integrali i kakvu primenu imaju

    u matematici.

               Kljuĉne  reĉi:  odreĊeni  integrali,  neodreĊeni  integrali,  primena  odreĊenih  integrala,  Njutn-

               Lajbnicova formula.


               SUMMARY


                         Integrals  are  one  of  the  most  important  concepts  of  mathematical  analysis.  There  are
               several types of integrals, but the most famous among them are indefinite and definite integrals.

               Integral  calculus  with  differential  calculus  creates  infinitesimal  calculus,  which  is  the  basic
               structure of science and technical science.


                         Definite integral is closely connected with old mathematical problem of determining the

               area  of  the  figure  beneath  the  graph.  This  problem  has  followed  all  mathematicians  until  the
               XVII  century,  when  Newton  and  Leibniz  discovered  a  link  between  definite  and  indefinite

               integrals. Namely they found that the area under the graph can calculate the inverse process of

               differentation. Today integral calculus has application both in mathematics and in physics, even
               in economics. My aim was to find out what integrals are and what kind of application they have

               in mathematics.


               Key  words:  definite  integrals,  indefinite  integrals,  application  of  definite  integrals,  Newton-
               Leibniz formula.
   362   363   364   365   366   367   368   369   370   371   372