Page 357 - PowerPoint Presentation
P. 357

MATEMATIKA  MESOPOTAMIJE
                                        MESOPOTAMIAN  MATHEMATICS


    Uĉenik:    NIKOLA UROŠEVIĆ ,VII razred OŠ,,Milorad Labudović Labud”, Baroševac
    Mentor:    VESNA RAJŠIĆ, profesor matematike   Elektrotehniĉka škola ,, Nikola Tesla”
    , Beograd
                                                       REZIME

              U Mesopotamiji su matematiku shvatali i koristili za praktiĉne potrebe. Vavilonci su
    od Sumeraca u aritmetici nasledili heksagezimalni( šezdesetiĉni ) sistem, gde se raĉuna sa
    brojem 60 kao osnovom. To je prvi sistem u kojem je jedan te isti znak mogao da oznaĉi
    razliĉite brojeve, već prema mestu , to jest prema poziciji koju zauzima. Mesopotamskim
    matematiĉarima  nedostajala  je  algebarska  simbolika.  60-iĉni  sistem  postao  je  trajna
    svojina ĉoveĉanstva. Hendikep vavilonske numeracije bilo je dugotrajno odsustvo nule –
    sve do 3. veka p.n.e. IzraĊivanje tablica opšti je metod stare vavilonske matematike. Oni
    su imali tablice reciproĉnih vrednosti, tablice mnoţenja, tablice kvadrata za broj N i sliĉno.
    Vrhunac drevne sumersko-vavilonske aritmetike je, bez sumnje, u rešavanju algebarskih
    jednaĉina.
         Znali su i za Pitagorinu teoremu, ali bez ikakvih dokaza.
         Matematika  Mesopotamije  bila  je  praktiĉna  iskustvena  disciplina,  nešto  poput
    eksperimantalne  prirodne  nauke  ĉija  su  se  znanja  otkrivala,  beleţila  i  koristila,  ali  bez
    pokušaja i bez svesti da matematiĉka znanja, na bilo koji naĉin traţe dokaz.


         Kljuĉne  reĉi:  matematika  ,  Mesopotamija,  šezdesetiĉni  sistem  ,  pozicioni  sistem  ,
    tablice
                                                                          Summary


           In Mesopotamia, mathematics was understood for practical needs. The Babylonians
    inherited from the Sumerians in mathematics hexagezimal system in which number 60 is
    used as a base for calculation. This is the first system in which the same sing could mark
    different numbers by their place, that is the position occupied.The Mesopotamian
    mathematics lacked the algebraic symbolism.The hexagezimal system became the
    permanent property of the mankind. The handicap  of  Babylonian numbering was the
    long-term lack of zero – until the third century BC. The manufacturing of plates was the
    general method of the old Babylonian mathematics. They used to have the tables for
    reciprocal value, multiplication tables , square tables for the number N and the the like.
    The highlight of the ancient Sumerian –Babylonian arithmetics was , no doubt, in solving
    algebraic equations. They had also known about the Pythagoren theorem, but without any
    evidnce. Mesopotamian mathematics was practical and empirial discipline , something like
    expermental science whose skills were  discovered, recorder  and used but with no attempt
    and no awareness that the mathematical knowledge, in any way, seeks proof.
                   Key words: mathematics , Mesopotamia, hexagezimal system , positing system,
    tables
   352   353   354   355   356   357   358   359   360   361   362