Page 391 - Srednje skole - radovi
P. 391

VEKTORI . VECTORS

      U ĉenik: TAMARA ŠEKULARAC,     I razred     Matematiĉka gimnazija, Beograd

     Mentor: VESNA RAJŠIĆ, profesor matematike    Elektro tehniĉka škola „Nikola Tesla”, Beograd

    REZIME

    Razvoj nauke uslovljavao je postavljanje i rešavanje mnogobrojnih problema u raznim prirodnim naukama,
    pa  tako  i  u  matematici  i  fizici.  Tokom  vekova  javljali  su  se  problemi  u  geometriji,  aritmetici  i  drugim
    oblastima matematike i mehanike. Razvojem nauke neke od ovih problema bilo je moguće rešiti. Sloţenost
    problema  zahtevala  je  i  razvoj  matematiĉkih  metoda  kojima  se  ti  problemi  rešavaju.  To  je  dovelo  do
    proširivanja postojećih i uvodjenja novih pojmova u oblasti mehanike i matematike. Saznanja o vektorima
    kao pojmu iz matematike, oblasti linearne algebre, primenjena su prvenstveno da bi se razlikovale veliĉine
    koje postoje u prirodi i imaju svoj pravac i smer, i kao takve razlikuju se od nekih drugih veliĉina u prirodi
    koje imaju samo svoju veliĉinu i nazivaju se skalari. Vektorima nazivamo veliĉine odredjene sa dva ili više
    parametara.  Vektori  predstavljaju  duţi  odreĊenog  pravca,  smera  i  veliĉine.  Njihovo  otkriće  uticalo  je  na
    rešenja mnogih pitanja u oblasti mehanike i fizike. Razvojem teorije o vektorima omogućeno je rešavanje
    realnih  problema  u  raznim  oblastima  ljudske  delatnosti,  kako  u  praktiĉnim  tako  i  u  ĉisto  teorijskim
    zadacima.  Vektori  se  primenjuju  u  raznim  oblastima  matematike  (geometriji,  analitiĉkoj  geometriji  u
    prostoru) i u raznim oblastima istraţivanja u mehanici i fizike. Ideja o ovom istraţivanju o vektorima potekla
    je iz ţelje da još jednom ukaţem na karakteristike vektora i njihovu izuzetnu primenu u oblasti metematike i
    fizike.     Kljuĉne reĉi: vektori, skalarni proizvod, vektorski proizvod, mešoviti proizvod, kordinate vektora,
    primena vektora

    Summary

    Development  of  science  caused  stating  and  solving    numerous  problems  in  various  natural  sciences,
    including  mathematics and physics. Over the centuries, the problems in geometry, arithmetic and other areas
    of mathematics and mechanics emerged. By the development of science it was possible to solve some of
    these problems. The complexity of the problems required the development of mathematical methods which
    could  solve  these  problems.  This  led  to  the  expansion  and  development  of  new  concepts  in  the  field  of
    mechanics  and  mathematics.  The  knowledge  about  vectors  as  mathematical  concept,  the  field  of  linear
    algebra, applied primarily to make the distinction between the sizes that exist in nature and have a course
    and  direction, and as such differ from some other quantities in
    nature which have only their own size and are called scalars. The quantities determined by two or more
    parameters are called vectors. Vectors represent a straight line of a certain course, direction and size. Their
    discovery had an impact on the solution of many issues in the field of mechanics and physics. Development
    of the theory of vectors enables solving real problems in various fields of human activity, both in practical as
    well as purely theoretical tasks. Vectors are applied in various fields of mathematics (geometry, analytical
    geometry in space) and in various areas of research in mechanics and physics.  The idea of this research on
    vectors  derived  from  my  desire  to  once  again  bring  attention  to  the  characteristics  of  vectors  and  their
    exceptional application in the field of mathematics and physics.

    Key words: vectors, scalar product, vector product, mixed product, vector coordinates, the application of
    vectors
   386   387   388   389   390   391   392   393   394   395   396