Page 396 - Srednje skole - radovi
P. 396

ZASNIVANJE NEEUKLIDSKIH GEOMETRIJA; GEOMETRIJA LOBAĈEVSKOG  THE
        FOUNDATION OF NON-EUCLIDEAN GEOMETRY; THE LOBACHEVSKY GEOMETRY


     Autor: Stefanovid Milan  prva godina Matematiĉke gimnazije

    Mentor: Perovanovid Mirjana profesor matematike u Matematiĉkoj gimnaziji


    Rezime

    Neopipljiva...  Neodoljiva...  Zanimljiva... Jednom  reĉju  matematika je  nešto  bez  ĉega  bi  mi  školovanje bilo  mnogo
    dosadnije, kao i ţivot. Matematika je jedinstvena i neizostavna. Druge nauke ne bi mogle bez nje, dok je ona jedina
    samostalna meĊu svim naukama.

    "Neka  ne  ulazi  onaj  ko  ne  zna  geometriju."  Reĉe  Platon.  Ovaj  rad  posvetidu  jednoj  veoma  apstraktnoj  grani
    geometrije.


    "Nema  ni  jedne  matematiĉke  grane,  ma  koliko  da  je  apstraktna,  koja  se  jednom  ne  bi  mogla  primeniti  na  pojave
    stvarnog sveta." N. I. Lobaĉevski

     Ako bismo bar malo razmislili o smislu ove izreke shvatili bismo da je ona zaista istinita. To nameravam da dokaţem
    ovim radom. U njemu obradidu jednu veoma zanimljivu i neopipljivu oblast iz dela matematike koji se zove Osnovi
    geometrije. Slobodno bismo mogli da kaţemo da je Euklid udario temelje geometriji i prvi zapoĉeo njeno deduktivno
    zasnivanje. Deo matematike koji du izuĉavati u radu nastao je u XIX veku, i naravno još uvek se razvija. Zove se
    geometrija Lobaĉevskog ili Hiperboliĉka geometrija.

    "Sve uzvišeno isto je tako teško, kao što je retko." rekao je Spinoza. To sam napomenuo zato što se mnogi od nas nisu
    susreli  sa  ovim  delom  matematike,  a  velika  vedina  de  ga  odbaciti  kao  ne  istinu.  MeĊutim  da  li  je  geometrija
    Lobaĉevskog kontradiktorna samoj sebi?


    Kljuĉne reĉi: aksioma, teorema, euklidski prostor, hiperboliĉki prostor, Lobaĉevski
    Summary


    Impalpable…Irresistible…Interesting…In one word, mathematics is something without which my schooling would be
    much  more  boring,  just  as  life  would  be.  Mathematics  is  unique  and  obligatory.  The  other  sciences  could  not  be
    imagined without it, whereas mathematics is the only independent science among all the other sciences.

    “Let  no  one  ignorant  of  Geometry  enter”  said  Plato.  I  will  dedicate  this  work  to  the  one  very  abstract  branch  of
    geometry.

    “There is any mathematical branch, no matter how much it is abstract, that could not be applied to the real world
    phenomenon” said N.I.Lobachevsky. If we thought a little bit about this saying, we would realize that it is really true. I
    intend to prove that by this work. In this work, I will deal with one very interesting and impalpable mathematical
    domain called the Basics of Geometry. We could freely say that Euclid laid the foundations of geometry and was the
    first  one  who  began  its  deductive  foundation.  The  part  of  the  mathematics,  which  I  will  research  in  this  work,
    originated in the 19th century and it’s still developing. It is called Lobachevsky geometry or hyperbolic geometry.

    “All that is sublime is as hard as it is rare” said Spinoza. I mentioned this because many of us have not encountered
    this  part  of  mathematics  yet,  and  great  majority  will  reject  it  as  an  untruth.  However,  is  Lobachevsky  geometry
    contradictory to itself?

    Key words: axiom, theorem, Euclidean space, hyperbolic space, Lobachevsky
   391   392   393   394   395   396   397   398   399   400   401