Page 394 - Srednje skole - radovi
P. 394

BINOMNA FORMULA


    Stefan Jovanović Gimnazija ,,Lazarevac’’ I , Lazarevac
                                                     5
    mentor:Vesna Rajšić


                                                          Rezime

    Isak  Njutn,  jedan  od  najvećih  engleskih  nauĉnika,  je  u  17.  veku  došao  do  ,,binomne

    formule’’ koja glasi:


             n
      a  b    a   n 0  n  b    a  n 1   b    a  n 2   b  ...   a   1  b n 1     a  0 b n  n N .  Ova
                           0
                                                                   n
                                                          2
                                                                                    n
                                           1
                                               n
                                n
                                                                   n 1
                                                                                    n
                                1
                                               2
     formula  je  usko  povezana  sa  ,,Paskalovim  trouglom’’,  koji  je  formirao  francuski
     matematiĉar Blez Paskal u 17. veku. Pomoću Paskalovog trougla se odreĊuju  koeficijenti
                                                             n
     ispred sabiraka koji ĉine rezultat izraza tipa (a+b) , gde je n .
                                                                           N
      Sadrţaj:
  1.  Binomna formula i njene karakteristike;
  2.  Paskalov trougao i njegove karakteristike
  3.  Primena binomne formule
  4.  Zanimljivosti
     kljuĉne reĉi: izraz, binom, formula, Paskal

                                                         Summary


                                                                              th
    Issac  Newton, one  of  the  greatest  english  scientists  ever, in 17   century  came  to  ,,binom
    formula’’   which is defined as:


            n
    a  b    a   n  n  b    a  n 1   b    a  n 2   b  ...   a   1  b n 1     a  0 b n  n N .  This
                                                                   n
                                                                                    n
                                                          2
                          0
                               n
                                          1
                                               n
                                                                   n 1
                 0
                                                                                    n
                               1
                                               2
    formula  is  very  connected  with  ,,Paskal’s  triangle’’  which  formed  french  mathematician
                          th
    Blaise Pascal in 17  century. Paskal’s triangle helps us to define coefficient in front of  add’s
                                                  n
    which define result of  term of type (a+b) , n .
                                                         N
    Content:
           1. Binom formula and it’s attributes;
           2. Paskal’s triangle and it’s attributes
           3. Use of binom formula

           4. Attractions

    key words: term, binom, formula, Pascal
   389   390   391   392   393   394   395   396   397   398   399