Page 394 - Srednje skole - radovi
P. 394
BINOMNA FORMULA
Stefan Jovanović Gimnazija ,,Lazarevac’’ I , Lazarevac
5
mentor:Vesna Rajšić
Rezime
Isak Njutn, jedan od najvećih engleskih nauĉnika, je u 17. veku došao do ,,binomne
formule’’ koja glasi:
n
a b a n 0 n b a n 1 b a n 2 b ... a 1 b n 1 a 0 b n n N . Ova
0
n
2
n
1
n
n
n 1
n
1
2
formula je usko povezana sa ,,Paskalovim trouglom’’, koji je formirao francuski
matematiĉar Blez Paskal u 17. veku. Pomoću Paskalovog trougla se odreĊuju koeficijenti
n
ispred sabiraka koji ĉine rezultat izraza tipa (a+b) , gde je n .
N
Sadrţaj:
1. Binomna formula i njene karakteristike;
2. Paskalov trougao i njegove karakteristike
3. Primena binomne formule
4. Zanimljivosti
kljuĉne reĉi: izraz, binom, formula, Paskal
Summary
th
Issac Newton, one of the greatest english scientists ever, in 17 century came to ,,binom
formula’’ which is defined as:
n
a b a n n b a n 1 b a n 2 b ... a 1 b n 1 a 0 b n n N . This
n
n
2
0
n
1
n
n 1
0
n
1
2
formula is very connected with ,,Paskal’s triangle’’ which formed french mathematician
th
Blaise Pascal in 17 century. Paskal’s triangle helps us to define coefficient in front of add’s
n
which define result of term of type (a+b) , n .
N
Content:
1. Binom formula and it’s attributes;
2. Paskal’s triangle and it’s attributes
3. Use of binom formula
4. Attractions
key words: term, binom, formula, Pascal