Page 384 - Srednje skole - radovi
P. 384

HIPERBOLIĈKA GEOMETRIJA. HYPERBOLIC GEOMETRY


    Uĉenik:TAMARA ŠEKULARAC, Matematiĉka gimnazija, Beograd
    Mentor: VESNA RAJŠIĆ, profesor matematike Elektrotehniĉka škola „Nikola Tesla”, Beograd
    REZIME
    Razvoj nauke podsticao je razvoj tehnike i doveo do napretka sveukupnog ĉoveĉanstva. Veliki broj problema koji se postavljao
    pred tadašnji uĉeni svet i nauĉnike zahtevao je rešavanje mnogobrojnih problema u raznim prirodnim naukama, a meĊu njima i u
    matematici i geometriji. Izuĉavanja u oblasti geometrije stara su hiljadama godina. Pokušaji razrešenja pitanja o petom euklidskom
    postulatu doveli su do osnivanja potpuno nove geometrije koja je ne protivureĉna. Ova nova hiperboliĉka geometrija je taĉna

    koliko i euklidska geometrija. Dokazi do kojih se izuĉavanjem ove geometrije došlo doprineli su proširenju postojećih znanja i
    uvoĊenju  potpuno  novog  pogleda  na  geometriju.  Ova  nova  saznanja  uticala  su  na  potpuno  novo,  drugaĉije  i  kompleksnije
    sagledavanje odnosa taĉke, prave i ravni u prostoru. Lobaĉevski je utvrdio da njegova neeuklidska geometrija ima neposrednu
    primenu  kod  izraĉunavanja  kosmiĉkih  prostranstava.  U  okvirima  obiĉnih  zemaljskih  dimenzija  kod  svih  proraĉunavanja  ljudi
    koriste euklidsku geometriju kao geometriju koja je najjednostavnija i najrealnije odraţava stvarnost. Dostignuća u ovoj oblasti
    govore o tome da se fiziĉki prostori prevelikih dimenzija ponašaju kao neeuklidski prostori. Za njihovo izuĉavanje potrebne su
    neeuklidske geometrije odnosno geometrija Lobaĉevskog. Ideja o ovom istraţivanju o hiperboliĉkoj geometriji potekla je iz ţelje

    da se sazna nešto više o mogućnostima matematiĉkog i geometrijskog rešavanja prostora, kao o neophodnom znanju  bez koga se
    ne mogu rešavati sloţeni prostorni problemi u raznim oblastima istraţivanja u domenu geometrije, fizike i astronomije.
    Kljuĉne reĉi: hiperboliĉka geometrija, aksioma Lobaĉevskog, paralelnost, hiperparalelnost, modeli hiperboliĉke ravni, primena
    hiperboliĉke geometrije
    SUMMARY
    The development of science encouraged the development of technology and led to the progress of mankind. A great number of

    problems which scholars and scientists of that time were facing demanded a solution of numerous problems in various natural
    sciences, among others, in mathematics and geometry. The studies in the field of geometry have been thousands of years old.
    Attempts  of  resolving  questions  about  the  fifth  Euclidian  postulate  led  to  the  creation  of  entirely  new  geometry  that  is  non-
    contradictory. This new hyperbolic geometry is as accurate as the Euclidian geometry. The evidence obtained by studying this
    type of geometry led to the expansion of existing knowledge and to the introduction of a completely new view of the geometry.
    The new findings influenced a completely new, different and more complex understanding of the relations among dots, lines and
    planes in space.Lobachevsky found that his new non-Euclidian geometry has direct application in the calculation of user spaces. In

    terms of ordinary earthly dimensions in all calculations people use Euclidian geometry as the simplest geometry which reflects
    reality in  most realistic  way.  Achievements in this area suggest that physical spaces  of too large dimensions behave as  non-
    Euclidian  spaces.  Their  study  requires  non-Euclidian  geometries,  i.e.  Lobachevskian  geometry.  The  idea  of  this  research  on
    hyperbolic geometry came from a desire to  learn more about the possibilities of mathematical and geometrical solution of space,
    as the knowledge necessary to solve complex spatial problems in various areas of research in the field of geometry, physics and
    astronomy.

    Key words: hyperbolic geometry, the axiom of Lobachevsky, parallelism, hyper-parallelism, models of the hyperbolic planes, the
    application of hyperbolic geometry
   379   380   381   382   383   384   385   386   387   388   389